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PONTRYAGIN'S MAXIMUM PRINCIPLE FOR A CONSTRAINED SYSTEM
OF ORDINARY DIFFERENTIAL EQUATIONS

R. Nottrot

(D.S.M. ,Central Laboratory, Geleen, the Netherlands.)

SUMMARY

Recently TIMMAN [ 2] succeeded in setting up a theory of optimization by applying variational principles
to problems of mathematical programming and control theory. These principles may" be considered as basic
when dealing with problems of optimization theory, In this paper we are concerned with a general problem
of control theory: inequality -constraints for both the control-variables and the state-variables are taken into
account. The point is to derive necessary conditions for the optimal control, which is such that the solution
of a set of ordinary differential equations minimizes some given integral, Moreover end-conditions will be
considered.

1. Introduction

In'problems of control theory the state x(t) = (x;(t), xqo(t),..., x,(t)) of
some system is determined by the choice of a set of control functions.
The problem of finding the optimal control u(t) = (u,(t), uy(t), ..., uy(t))
that maximizes or minimizes some functional is the fundamental problem
of optimal control theory. In some fashion this problem has been treated
by Pontryagin [1] who derived the well known maximum principle, a set
of necessary conditions for the optimal values of the control-variables,
Recently Timman [2] succeeded in deriving the necessary conditions for
an even more general problem by applying elementary variational methods
to control problems, _

In practical applications the control—variables U, W,..., U are gen-
erally subject to a set of constraints:

pi(u,t) <0, i=L2,....., r (1)

and also the state-variables x

1 Xgseeeses, X are subject to a number
of constraints:

g.(x1) <0, k=1,2,....., v (2)

In the following we shall be concerned with the problem of finding a control
u(t) = (u;(t), ug(t),...u(t)) such that the arc x(t) = (x;(t), Xo(t),....
Xy(t)) from a fixed point (X,,T,;), X, = x(T,) to a given point (X1, T)),
X1 = x(Tl) in (x, t)-space, which arc satisfies a set of ordinary differential
equations:

. dxi

Xizw =fi(x’u't)’ i-= 132:---.- n, ‘ (3)

minimizes the integral:

31

5 F(x,u,t)dt (4)

B
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Moreover the control-variables are subject to the constraints (1) and ‘ihe
state-variables are subject to the constraints (2), The variational approach
as developed by Timman [2] is basic in the derivation of the necessary
conditions for the optimal values of the control-variables. The formulation
of the set of necessary conditions difféers slightly from that given by
Pontryagin [1], though both formulations are equivalent, as far as
Pontryagin has been occupied with a similar problem.

2. The set of necessary conditions.

Let u(t) = (u {t), us(t)y....o..., u,(t)) denote the optimal values of the
control-variables and assume that the curve x(t) = (x_l(t), x2(t),.......,
X (1)) from a fixed point (X,,T;), X; = x(T;) to some given point (X,,T,),

L x(T, ) in (x,t)-space satisfies the differential equations:

)E, = fi(X,u,t), is= 1;2:---: n, (5)

1

subject to the conditions:

v (u,t) €0, j=1,2,...., 1, ‘ (6)

i
g}((xst)<0’ k=1.!2:-o--: 14 (7)
and minimizes the integral:
I
j F(x,u, t)dt (8)
T

0

as compared with all curves joining (X,,T,) to (X;,T;) and satisfying the
same .conditions (5), (6) and (7).

The functions F, f;, P and g, are supposed to be of clase c? in (x,u, t)-
space, The curve x(t) is an extremal from (Xy,Ty) to the point (X, T, ).
The conditions (7) define an admissible region R in (x,t)~space, It is as-
sumed that there exists a field of such extremals from (X,,T,) to the
points (x, t) in some neighbourhood of (X,, T;) in R; among all curves from
(X4, T, ) to a point (x, t) subject to the conditions (5), (6) and (7) an extremal
has the characteristic property that it minimizes the integral

5 F(x,u,7)dT, . (9)

T

Let J{x,t) denote this integral along an extremal from (X,,T;) to (x,1),
Now consider the extremal x(t) from (X,,T,) to (X;,T,). It is assumed
that the right half open interval [TO’Tl) is the union of a number of such
disjoint right half open sub-intervals that throughout the interior of a sub-
interval certain constraints in (6) and (7) vanish whereas the other con-
straints are less than zero*, Let [ 7,, 7, ) be such a sub-interval and suppose

that for 7, < t < T the conditions

pi(u,t) = 0, i=12,..., agr, (10)
g (x;t) = 0, k=1,2,..., vugv, (11)
whereas

* One might assume that [TO,T]) is the union of a countable sequence of such intervals.
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¢ (u,t) <0, = qrl, g2, ..., T, (12)
gk(xzt) <0, k = utl, M2, .., v (13)

are satisfied along the exiremal x(t), After introduction of slackvariables:

¢y 2, =0, j = L2,..., r,

g, t v, T 0, k=1,2,..., v
these conditions pass into

ZJ,:()y i=1,2,..., q,

v, = G, k= 1,2,..., u
whereas

z, > 0, j = aqtl, gt2,..., r,

v, > 0, k = wtl, ut2,..,, o

Later on it will be clear, that the constraints ¥; < 0, J > q and gk< a,
k > u are not essential for 7, < t < T,

We will derive a set of necessary conditions for the extremal x(t) joining
(X, Ty) and (X, T, ) such that the control-functions are continuous functions
of t on the interval (7o, 7,). For the results that we have in view it is
sufficient to consider only uniformly small variations of the control-variables
on (7,, 7): |éu(t)l <€ 7T, < t < 7. Then the carresponding variations of
the state-variables are also uniformly small on (7., 7). Terms of order

o 0* 1
€* will be neglected.
Let us introduce the functions:
n O, %,
= + —
hk .2_?1 X . fl at : (14)
i= 1
It is assumed that the matrix
a(hj, T TR T )
B(ul, Upssvunnnnnnnennaeaa, U}
has rank y + q; Let us suppose that the matrix
A» a(hll hZJ"-: ,h'u,a LP]_: ‘PZ""" ‘Fq)
3\111, u2»--vy-.----..--.vv-a u""*q)
is non-singular so that it has an inverse M with elements denoted by v .
Because of the q + u constraints ¢, = 0, Jgaand g, =0, k £ u the
variations éu , éu,,...., du_ are restricted. Therefore we shall eliminate
q + p variations éuy, Su,....,déu so that we have m - u - g arbitrary

variations of the control“—variable?qleft.
From g, * v, = 0, k ¢ w4 it follows that
5 n d «
+ = —— = =
8 * oy = ax, o, Fov =0, k=1,2,.....,

where 6v, > 0, Differentiation with respect to t yields:
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BBy v BB g b B OB g
p. . : =
i1 0k 5 g oxgax I i=21 ax ot i T OV T 0

Substituting for 6)21 the expression

. a 9f; m of;
6x. = E‘a— o0x. + X —— 6u.
i j=1 X], } j=1 8UJ J
we find that
Eagk)%afis +§ag‘kmaf16 +%%azgk fox +
— L — 6%, —_— )
i=1 Bxi j=1 aXJ J i=1 aXi ]:El auJ u] i=l j=1 aXian i Xi.
n 82gk .
+i=}_;, 5%t chi + 6Vk = 0,
1
Now
2 2
ahk_}%agk f+}r§agkafi+agk
_axj i=1 axiaxj I axi axj axjat :

Thus we obtain the equations

n 8h m 8h ]
15&1—'6X1+J~§13uj 6uj+6Vk = 0, k=1,2,..., u. (15)
From 2 + z; = 0, j £ q we*have that
6"’+6Z=11E5X+gfp—j6u +6z =0, j=1,2 4 (16)
] j =1 9%, 1 o du k j ’ R * B

where 6z, > 0. Solving fu;, uy,..0e.., 8u from the equations (15) and
(16) we Obtain:

n . m " . q v
é6u = -L A 6x, - E B éu, -L v.6v - z, 17
i k=1 Ik k k=prql ik k =1 71] V] J.Ei Yi,p.+j 6 j ( )
j=1,2,...., utfq,
where
i = —_— —_—
ik j=1 71] axk =1 Yl,u"‘j ox jf:l Yl_] axk (18}
and
B by i, ihé (19)
0 Y ouy = Yius ou, °
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Now consider the difference
T T,

1 1
V = S Fx+6x, utéu, t)dt - S F(x, u, t)dt
0 0
T 33 m
=5{>: x.+z;3—F-5u}dt,
- 0X, 1 Haul T
T ]

where u(t) is the optimal control for the extremal x(t) joining (X,,T,) and
(Xl,T]). From (17) it follows that

7
1
n[raF mq o m oF B oF
v = 5 { ST A | ex, o+ &
7 L [axk jﬁ du, Jk:l X, * L [&1 121 u, Jk] ou,

k=perqrl] k
u+q Htq q
or & . oF
- o 5 - o
IS % B oo E Vi 6zk} dt
and from
n m afl
6x. =L — 6x, + T — 6u
kew 8%, ko 00 Tk

) n [0fi  weqdf; m [0f; g 8L
6x. = L |7—— - L — A, é6x, + L |=— -L — B éu
u. ik k jk k

k=t | 9%, =1 9Y, kewrqr] O, 5= 311
utqg afl In . ‘_H.q af q .

Let us introduce a set of functions ¢;(t) of t on (To’ Tl) such that

~dy of. + 3f
aF M aF k , B i Ma
or L A, =—247T - L — A
X, = U.j Ik dt i=1 vy [axk =1 311 ‘ (20)
' k=1,2,....,n.
Then it follows from
U ox. = (g 6x) - ¢ 6x
i 9% T G Wi 0% 1 9%y
that
! af of
d m |5F B 9 n i wtq 0L
V=5{—EW6><+E-———E—-B.-E,.__ RN
T I 5= ‘/-L+C1+1':au 10y I i ou, J'El By, P P
porra [ oo o Of ) 4y [ g
- L L (=", - . ty - gL
k=1 j=1 (auj ik i=El 1811). Jk, 5VJ kglji:l 311). QAR

n 3fi
- i§1 Wi_au. V5, wrk 6zk} dt.
J
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Putting
ptq n afi
= _i _aF
Ak j§1 YLP‘”‘ ('3:31 l//iauj u; )’ (21)
and
utq n afi aF
o =Ly \ & el el (22)
]-—1 i=1 ] ]

we find from

frem n af; F p-;cl n ('3fi 5F " 3h1
L L ¢ — B, --——B. = Loy — - == 1
=1 <i=1 % duj Tk Quy K \ “ du, auj> <1§1 o,

q o9, w  Ohy g N 0%,
+ L — ] = —
1=t Y el du El 4% K 151 Lou,
that
N ™ T of 8h 3
m 9F n i m ; q .
V= | L éx, +5 L (24— - — + L a—1 + —
l,pl t l:} {k=y+(’[+l<auk i§1 wl auk =2 % auk j:% hj du 6uk
- T T :
s % g ee 7B A6z, ld
a, v * Z t.
e CEOTR g Tk k}
Since

j=1 i=1 j j
g o
= @,
the functions ¢;(t) satisfy the differential equations*:
A of. oh
' o 1 i b 1 .

= - —— — =1 ., 1. 2

wk Bxk 121 wi axk 151 B! 8xk > 1 L TEREEERE (23)

By virtue of

Z v, + Ly
=1 4 0uy = Thetl ouy 1k 1, 1=k
we have for k = 1,2,..... utq the equations

X This set of differential equations is identical with the system of adjoint equations that Pontryagin introduced
in his derivation of the maximuwn-principle.
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n of, “ oh 4 Oy .
E -5 ('/ji = + T 0. S + B Kj_] =
E)uk i=1 auk =19 8uk =1 auk
i} 9F _ n afi N [T Vo E afi _ oF ahj (24)
E)uk i=1 1ou, =l 1=1 My =l 1oy ou, / ou

q urq n of; aF a\uj
+]'?:_::1 1§1 1 v <1)=:1 wi 3u1 B au1 3uk = 0.

Now suppose the functions @, to be differentiable with respect to t on (Tgs T1)e
Later on this assumption will be justified, Setting:

= - (25)
My %y
we find from
B _d E 5 ok, m .
" L @, gk> "I E @ bv, —k=21 o bv, +k§1 @ bv, =
L ouby, + T
- v, *t a, ov
k=1 Hi Vi k=l KUK
that
T
n / " ng> 1
V = Y., - L o=——| 6x +
i=1 i kel kaxi i
7o
T of. oh o
1 m n H
+5 > gi— —— + L a5 zx——>auk+
k=ptq+l \ IV Kk =1 ) Ouk =1 ) k =1 Jouy
;
0
« q
+ lglukévk +k§] )Lk 6zk dt, (26)
Introducing the functions
og
N I ] (27)
P ¥y Ji:l e 1,2,....., 10
we obtain from (26) the expression:
oo
o Ene] DL g
= 6X. = - L p=— +%
=l P; 9% kesperyt | auk i) B, aul_ =1 Aj aul, }éuk *
T o o A/
0 0
N I g
g oHev L Mﬁzk} dt. (28)

From
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f oh
_ 9F n Tk o 1
([/1 - ox kgl ‘l/k Ox E]. al ox

af, o g, of G

9F n k “ | g, n 98 k g,

= = - ¢, —_+ Yy ——f + ——

= - a [kzl Bx ox, * E x_ 9x, = 0x ot

n oy B /3g1 n 9g; of
=3F—E¢/k———+2al-d—-—-\+): 1 k
X, k=1 *OX. =1 dt \8x,/ =1 9%, ax,

3 of, dg. .9
oF n I g, Kk d g1 n g,
= — - X - —_—— + —_ P —_—
Ta <‘”k 2 % >a;< g T: <‘”l 5%, ) T e

it is seen that the functions p,(t) satisfy the adjoint differential equations

i of M ag

aF .
. T mm— = + —, -
P ox; 1\'}51 By ax i=1 of o, i=1,2,.,..., n, (29)

Since

gp o O, dh g B, OF  , Caf, g D,
+ Z A —

& LYy —+La —+ LA —L= L —
duy e P OW g B ) AW AU g B ou, =1 Jou,

it follows from (24) that for k < gq+u

3F i} af. 3‘?.
au. L P au * %XJ au =0 (30)
k i=
For q< jgr we set A, = 0 and for u < k \vwe set u, = 0. Assuming

the functlons pl( )s p2(t), ..., p(t) to be continuous on [T T ] we fix the
solution .of the dlfferentlal equations (29) by 1mpos1r1g the endcondltlon that
at the pomt (X, T )

Y
B = o, | (31)

provided these derivatives exist in R,

The constraints ¢. £ 0, j > q and g, g 0, k > ¢ can be ignored on (T, 7'1);
if t is some point of (7'0,71) then there exists a neighbourhood (t-4," t+A)
such that ¢ (u + 6u,t) < 0, j > q and g,(x + &x,1)<0, k > u on (t—A, t+A)
for sufficiently small variations of the control-variables,

Now the functions p,(t) are continucus on [TO ,le and

Ep,(T,)6x(T,) = 8J(X,,T,)

Thus, since
TO
5{F(x+6x, wkbu, t) - F(x, u, t)}dt > 6J(X,,T,)
m ‘

and since the variations éu,, k > q + u 62, and vy in (28) are arbitrary
except for the condition 6z, » 0 and év, > 0 We obtain from the fundamental
lemma of the calculus of variations (taking the variations éy = 0, k > gtu
outside a sufficiently small neighbourhood (t - &, t +A) of te(7,, 7'1)) that
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also for k = ptqtl, wrq+2,,..., m

of . e .
oF 2 i 3 i
— - —_— —_— =

au, & P du, EN du, 0 (32)

on (T,, T;) and moreover that
A 20, k=12,....., q
and
My > 0, k=1,2,....., u.
So we have oh a sub-interval (7, 7;) of [TO,T1 ], which is such that
throughout (7, , 7;) certain constraints vanish whereas the remaining con-

straints are less than zero, the following mnecessary conditions for the
extremal joining (X, T;) with (X, T, ):

of. r dp . )
oF n i k . ~
Bu T LPiEm * o = 1,2,....., m,
auj i=1 Pi au} k)=:1 lk SuJ 0’ J L m
Mo, T0A 20, k=12, , T,
of. dg
oF n i ) ko
T ex T % = 1T : 33
L ox. E: p] 0xX. X___:l uk ox .’ 1 ,2,.....5 1, & ! ( )
1 .’1 k i
M8 =0 u >0, k=1,2,..... , v,
X = fll 1 = 1;2’ ----- 3 n

Obviously x, u and p are differentiable with respect to t on (79, 7). So
the assumed differentiability of @, in (25) is justified. If we introduce the
Hamiltonian

H=—F+.'E pif; -

Tt -

. ,
- 3
Mep - Lowgs (34)

then the necessary conditions can be expressed in the canonical form:

oH - ]

auj = 0’ J = 132: ----- :mx

.- p, i=L2...,0 b (35)
i

oH _ - _

EE—xi, i 1,2,..... , n ]

From these relations it is seen that the Hamiltonian satisfies the equation:

aH _ 31
dt ot

on an interval (7, 7).
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Along the extremal x(t) joining (X,,T,) and (X, T;) we have from (28)
and (32) that :

gl M i/ \,
65 F(x,u,t)dt = E P, ox [+ S L A bz + L u bv |dt.
i=1 ; k=1 kR = TkOK

T‘.l 0 ’TO

Hence

6 [ {Peauwn + £ ayne n) + B oug s m} ar - L p(0ex(0. (36)

To

If we consider only variations of the control-variables for which éx,(T,) = 0
then it follows from this relation that

T
1 v

S {f L oAt kgl “kgk} dt = 0

To

Therefore, among all curves joining (X,,T;) to (X, T,) and satisfying the
differential equations (5) the extremal x(t) minimizes the integral

k=1

T
v

5 F o+ L Mgy + L ulgl} dt. (37)
k=1 ANEEAY

o .

Note that the constraints (6) and (7) are omitted. Let J*(x,t) denote the
integral

S{F s M‘Pl + E “l\gi\}

from (X,, T,) to some point (x,t) of the extremal x(t). Since x(t) minimizes
this 1nte6ral as compared with all curves joining (X, TO) to (x,t) and
satlsfymg the differential equations (5) we have that

1

/ r
o f vz ag + E ukgl) dr = 63%(x,1) +

T
0 : m F + Zx v, + Zu, g a of; .
-+ - = j6u, )
5 =1 auj i=1 pi auj J 7
T
0
where
o(F + Ekl\"pk + Eul\'gk) Bfi
du, - Ip du, -0

Consequently we find from (36) that

Epi(t)éxi(t) = 6J%(x, 1), (38)
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Since the extremal x(t) minimizes the integral (37) with the constrainis (6)
and (7) omitted it follows that the condition

corresponds to a maximum of the Hamiltonian (34) (cf. Timman, [2],
scction 6), which expresses the maximum-principle,
3. Endconditions
Thusfar we assumed the endpoint (X,,T;) to be some fixed point in (x,t)-
space, In applications however it often happens that a number of endcon-
ditions for the endpoint (X, T):
L (X, T) =0, k=1,2,..... s S, (39)

where X = x(T) has to be satisfied. It is then the point to minimize the
function J*(X,T) subject to the conditions:

x[<(X:T)=O= k=1:2:---.-, S,
So the Lagrangian function

L = J¥X, T) -él By x (X, T), (40)

where B], Bz""" B, are s multipliers, has to be minimized. For the
minimum of this function we have the necessary conditions:

ox
oL, aJ* $ k
2 =2 LB - =0 (41)
B, T X, Tl "k BX,
and
‘ s 9y
oL, _ ark 3 ko_
ot~ 5T " PwT O (42)

the transversality conditions at the endpoint (X, T) of the extremal x(t)
joining (XO,TO) with the manifold defined by the equations (39).
Let us consider the case that the endcondition

T = T,

is prescribed, which condition corresponds to a variable endpoint X in x-
space, From the transversality-conditions we find that

3

_— = O
X,

at the endpoint (X, T). From (38) we have that at the endpoint (X, T) of the
extremal joining (X ,T,) to (X, T)

6J%(X,T) = Zp (T)6X(T)

where apparently 6J*(X, T) = 0, Therefore we can impose the endcondition
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p,(T,) = 0 - (43)

for the system of adjoint differential equations in case of a problem with
free endpoint X,
Let us now consider the case that the endcondition

X = X . (44)

is prescribed, which condition correspondsv to a fixed endpoint X with T
variable. From the transversality-condition we find that

A
aT = ©°
at the endpoint (X,T). Now we have from (38) that for a displacement
(AX, §T) of the endpoint (X, T):

"

E b L
AT = 63* + (F +L e L ukgk>6T
e

=1

n r Ny
L poX, + (F + L ey + o ukgk>6T,
i=1 j =1

where GXi = .AXi - ficST. Hence

AJ* = Ep AX, + HET
p,AX; ,

where 6T is an arbitrary variation. Tthus we obtain the endcondition
H=0 (45)

for a problem with fixed endpoint X,

4. Final remarks
If constraints of the form
'P]' (u: X: t) < 0

for the control-variables are prescribed then the same conditions as (35)
hold for the extremal joining (X ,T,) and (X,,T,). The derivation of these
conditions is quite analogous to that given in section 2,

When maximizing the Hamilionian H at some point t of [-_To ,T :[ obviously

v
the term I p, g does not matter.
k=1

The state-variables are found by means of the differential equations (5),
subject to the conditions (7).
In practical applications the constraints often have the form:

a; < ujgbj, j=1,2,..... , m (46)

for the control-variables and

a, < x, < B, k =1,2,..... , n (4m

k =
for the state-variables, In numerical computations suchlike constraints are
easy to deal with, In case x;, = @, or x;, = B, in (47) f;, = 0 which implies
that the Hamiltonian does not contain p,.
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As long as the constraints (7) are all less than zero the functions p;(t)
are determined from the system (29) of adjoint differential equations, where
p; = 0, As soon as some of these constraints vanish the relations (27) may
be used, where ¢, is found from (22) and the functions ¥.(t) are solutions
of the system (23) of differential equations. The unknown initial value p(T)
which must be chosen such that the endconditions are satisfied means
fairly complicated feature of the numerical procedure. :
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